FC5

FAST COMMUNICATIONS

Contributions intended for this section should be submitted to any of the Co-editors of Acta Crystallographica or Journal of
Applied Crystallography. In the letter accompanying the submission authors should state why rapid publication is
essential. The paper should not exceed two printed pages (about 2000 words or eight pages of double-spaced typescript
including tables and figures) and figures should be clearly lettered. If the paper is available on 5.25" IBM PC compatible
or 3.5" Apple/Macintosh diskettes it would be helpful if these could be sent with the manuscript together with details of the
word-processing package used. Papers not judged suitable for this section will be considered for publication in the ap-
propriate section of Acta Crystallographica or in Journal of Applied Crystallography.

Acta Cryst. (1990). Ad6, FC5-FC7

Comment on '"Magic strains in face-centered and body-centered cubic

lattices"

BY BENJAMIN W. VAN DE WAAL

Department of Physics CT1324, University of Twente, PO Box 217, 7500 AE Enschede,

The Netherlands

(Received 2 January 1990; accepted 22 January 1990)

Abstract. The six symmetry-related so-called
magic strain tensors that transform a f.c.c.
lattice (or a b.c.c. lattice) into itself, which have
been reported recently by Boyer [Acta Cryst.
(1989), A45, FC29-F(C32] are not unique: an
infinite number of displacement tensors can be
constructed that transform one lattice into
another, or into itself. There is no connection
with fivefold symmetry, other than that in any
f.c.c. crystal.

In a recent paper, Boyer (1989) describes the
assignment of special values to the elements of
an orthorhombie strain tensor, in order to obtain
tensors (termed 'magic’) that can transform a
f.c.c. or b.c.c. lattice into itself. Since the tensors
are symmetric with non-zero off-diagonal
elements, it is convenient to use a different frame
of reference, X'Y'Z’, in which the tensors are
diagonal (the axes of Boyer's frame XYZ are
aligned with the cubic axes of the crystal before
deformation). As is easily verified, the unit
vectors ~—1(1,1,0), 1(-1,1,0) and (0,0,1) (with r
=V2) are the eigenvectors of T [defined by
Boyer's formula (1)}, so T can be diagonalized by
the similarity transform

T'=R-!TR
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withdj=14¢,A9=1-¢,and Ag=(1+ b)/(1-c2).
Apparently, in the new frame of reference,
X'Y'Z', T' represents homogeneous expansions
A1, Ao, A3 in the X', Y' and Z' directions,
respectively, and an overall expansion
(a/ag)(1 + b)-1/3, The orientation of the frame
X'Y'Z', relative to XYZ, follows from R: it is
obtained by a c.c.w. rotation by 45° about the
positive Z axis, i.e. the X' axis is in the original
[110] direction. Since, on (110) planes, the atoms
are arranged on a rectangular grid with Y’
spacing r-lag and Z' spacing ag (ag is the
conventional lattice constant, ¢f. Fig. 1), it is
clear that a 'magic’ strain can be obtained by an
interchange of these spacings. Accordingly, the
Y’ spacings should be multiplied by r and the Z’
spacings by r-1. Solving the equations
(alag)(1 + b)-18X;=1,r,r-1(i=1,2, 3), fora, b and
¢ leads to the 'magic' values, given by Boyer.
Obviously, the strained structure is identical to
the original structure after a rotation by £90°
about the [110] direction. This operation is
equivalent to the one given by Boyer — a 45° c.w.
rotation about Z, followed by a 45° c.w. rotation
about the new X - if it is realized that it is not
unique: it may be followed (or preceded) by any
point-group operation of the cubic lattice.
Specifically, if it is followed by a 120° rotation
about the threefold [111] axis (effectively

© 1990 International Union of Crystallography



FCé6

interchanging the three orthogonal axes), the
quoted rotation is seen to be identical to the
simple 90° rotation. The six [110] directions in
the cubic lattice allow six equivalent
transformations.The exchange of atoms between
coordination shells becomes apparent from Fig.
1. It is clear that, since close contact is
transferred from rows to columns, the first
neighbours in a row become second neighbours,
and the second neighbours in a column become
first neighbours, i.e., for example, two S1 go to
S2, and vice versa. It is readily verified that the
eigenvalues and eigenvectors of the b.c.c. magic
strain tensor are identical to those of the f.c.c.
tensor, likewise merely describing an
interchange of atomic Y’ and Z’ spacings in (110)
planes. Indeed, a single strain tensor suffices to
describe 'magic’ strains in f.c.c. and b.c.c. lattices
alike.

There are many other ways to transform af.c.c.
lattice into another f.c.c. lattice by a
displacement tensor (the term displacement is to
be preferred over strain, because the atomic
shifts are not small, when compared to the
equilibrium interatomic distance). Formally, the
two-dimensional grid on any lattice plane can be
transformed by homogeneous distortion into the
grid on any other lattice plane; proper lateral
shifts of successive planes and adjustment of the
interplanar spacing will finish the operation.
Apparently, this can be done in an infinite
number of ways. In general, there will be no
simple relation between the orientation of the
frame of main axes of the strain tensor, and the
crystal axes, however. As an example of other
transformations, consider the diagonal tensors
with elements r, 1, ! and r183, F18 ~28 (X'Y'Z’
frame). The first tensor corresponds to a f.c.c. =
f.c.c. transformation, in which (110) planes
become (100) planes. The second corresponds to a
f.c.c. = b.c.c. transformation (requiring b=r-1-1
and ¢=0, i.e. the coordinates of the saddle point
in Boyer's Fig. 1); with fixed volume (a=ag) the
b.c.c. structure is in a state of compression that
can be relieved by setting a/ag=21/3(2/3)1/2=
1.028. Consequently, the barrier height equals
the difference in binding energy per atom of a
f.c.c. crystal and a b.c.c. erystal, 0.37¢
(Hirschfelder, Curtiss & Bird, 1967). Diagonal
tensors A with elements 1/2,1,1 (X"'Y"'Z’' frame
with X'’ in the [111] direction) transform f.c.c.
into simple cubic as well as simple cubic into
b.c.c. Consequently, A2 is another f.c.c. = b.c.c.
tensor.

Since only affine transformations have been
considered, there can be no connection with
fivefold symmetry, as suggested by the author.
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Indeed, the angle acos(1/3)="70.53°, which is the
angle between close-packed (111) planes in the
f.c.c. crystal, is close to 2n/5, which allows five
equally sized, but differently oriented,
tetrahedrally shaped f.c.c. erystals with close-
packed faces to be arranged about a common
edge, with neighbouring tetrahedra sharing
triangular faces (Ogawa & Ino,1972).

In order to introduce fivefold symmetry in a
single f.c.c. crystal, inhomogeneous distortions
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Fig. 1. (a) Atomic arrangement in two successive (110) layers
of a f.c.c. crystal. The view is down the {110] direction (X').
The atoms form close-packed horizontal rows (spacing
rlag), with a vertical (Z') spacing ay. (b) The strained
arrangement. The spacings of rows and columns are
interchanged. The two arrangements are identical, if the
atoms are unlabelled. The numbers identify the
coordination shells of a central atom ('0").
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have to be applied that transform a
cuboctahedron 1into an icosahedron
(Mackay,1962). The icosahedron, in turn, can be
transformed into a f.c.c. cuboctahedron, not
necessarily coinciding with the original
structure, but related to it by a 2rnn/5 rotation
about one of the fivefold axes of the icosahedron.
Since there are two ways to transform the
cuboctahedron into the icosahedron, it is clear
that the relation with the original orientation of
the f.c.c. cuboctahedron is lost after a few
transitions.

The physical significance of these transitions
(if occurring at all) is restricted to crystals of
submicroscopic size (possibly in the nucleation
size domain), since the energy barrier connected
with the icosahedral transition state becomes
prohibitive beyond N~104 atoms (van de Waal,
1989).
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The physical mechanism, underlying the
possible nucleation of fivefold symmetry in the
liquid, has been suggested by Frank
(1952),whose ideas have found recent support in
molecular-dynamics simulations (e.g. Jonsson &
Andersen, 1988).
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